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eastern Thailand. With the exception of the arene 
oxide 6b, all of the compounds postulated in Scheme 
IV2' have been isolated from this plant. These are the 
benzyl benzoates (19 and 37),38 the o-(hydroxy- 
benzy1)flavanones (14 and 46),% the missing link dienes 
(22 and 23),31 and the cyclohexene oxides (2, 24, and 
25)31 as well as their various metabolites (30-33).35836 
These findings have put the Cole and Bates biogenetic 
pathway (Scheme IV) on firm ground. 

Last of all it might be mentioned that the latest ad- 
dition (unpublished) to the family of naturally occurring 
cyclohexene oxides is a new cyclohexene diepoxide, 
boesenoxide 86, from Boesenbergia sp. (Zingibereceae) 
from Thailand.54 
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(54) Personal communication with Dr. P. Tuntiwachwuttikul of the 
Department of Medical Science, Ministry of Public Health, Bangkok, 
Thailand. 

~ e a e ) , ~ ~  neither this compound nor any of its relatives 
(bearing the cis diepoxide structure) has been found in 
the Uvaria plant. This has raised the suspicion that 
despite their rich pool of benzyl benzoates (e.g., 36-43) 
and dienes (e.g. 18), the Uvaria plants probably lack 
the biological means to synthesize the cis diepoxides. 
The possibility that these mono- and diepoxides should 
arise from different biogenetic pathways is considered 
unlikely since it has been established that crotepoxide 
( l ) ,  cr-senepoxide (2), pipoxide 16, zeylenol (281, and 
ferrudiol (30) all have identical 2S,3R absolute config- 
urations, a fact highly suggestive of a unified biosyn- 
thesis via a common key intermediate, the diene 18.53 
Results from the study of Piper hookeri, from which 
crotepoxide (l) ,  pipoxide 16, and pipoxide chlorohydrin 
85 have been isolated,26 lend further support to  these 
deductions. 

Deserving special mention among the Uvaria species 
is Uvaria ferruginea which was collected from north- 

(52) 0. Pancharoen, V. A. Patrik, V. Reutrakul, P.  Tuntiwachwuttikul, 

(53) G .  R. Shulte, B. Canem, Tptrahpdron L ~ t t .  1982.23, 4299. 
A. H. White, Aust. J .  Chem. 1984, 37, 221. 
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Many macromolecules are able to bind a variety of 
ligand molecules to one or more specific sites. The 
importance of this phenomenon lies in the fact that the 
binding of one ligand often influences the binding 
strength of the macromolecule toward a subsequent 
ligand (or ligands). When this happens, one speaks of 
cooperative binding. This effect is the basis of enzyme 
control and many other vital biological processes. If we 
were to elaborate on this theme, we could only repeat 
what has been ably presented elsewhere.'-j 

In view of the importance of cooperative binding, it 
is not surprising that much effort should have been 
devoted not only to the elucidation of the mechanism 
by which the phenomenon might arise in a specific case' 
but also to the development of general methods by 
which cooperative binding can be recognized and sub- 
jected to mathematical or graphical representation. 
What is surprising is the seeming lack of coordination 
between papers dealing with different aspects of the 
topic, so that there is even some confusion about the 
very definition of the term "cooperativity". Wrong, or, 
at least, misleading statements seem never to have been 
challenged, and the interesting results of some theo- 
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retical t r ea tmen tP  have not yet found their way into 
the literature which deals with more practical aspects. 

In this Account, we present a short review of the 
formal aspects of cooperative binding as we see them, 
confining ourselves to homotropic binding, i.e., the 
multiple binding of like molecules. We shall employ 
a consistent nomenclature and point out some of the 
various pitfalls presented by this subject. We also be- 
lieve to have some original contributions to make to 
various aspects of the topic. 
Stoichiometric Binding Constants and Binding 
Equations 

chiometric binding  constant^^,^,^ 
We shall use the following definitions for the stoi- 

(1) D. E. Koshland, Jr., and K .  Neet, Annu. Rev. Biochem., 37, 359 

(2) N .  Citri, Adu. Enzymol., 37, 397 (1973). J. A. M. Karplus and J. 

(3) G. G. Hammes and C.-W. Wu, Annu. Reu. Biophys. Rioeng., 3, 1 

(4) G. Weber, Ado.  Protein Chem., 29, 1 (1975). 
(5) I. M. Klotz and D. L. Hunston, Arch. Biochem. Biophys., 193,314 

( 6 )  P. A. Baghurst, L. W .  Nichol, and D. J. Winzor, J .  Theor. Biol., 

(1968). 

A. McCammon, CRC Cri t .  Reu. Biochem., 9, 293 (1981). 

(1974). 

(1979). 

74, 523 (1978): 
(7) W. G. Bardsley, J. Theor. Biol., 67, 407 (1977). 
(8) W .  G. Bardsley and R. D .  Waight, J .  Theor. Riol., 72, 321 (1978). 
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where P and X designate the macromolecule and the 
ligand, respectively, and t is the total number of sites. 
(In a nonideal solution these constants are not ther- 
modynamic constants but concentration quotients, a 
fact which is often glossed over. We shall assume that 
measurements are always carried out under conditions 
of constant activity  coefficient^.^) When the binding 
sites are identical and independent, then all the Kn's 
can be expressed in terms of a single intrinsic or site 
binding constant Q, namely3p9 

K ,  = Q(t  - n + l ) / n  ( 2 )  
so that 

Kn+l/Kn = n(t - n ) / ( n  + l ) ( t  - n + 1) (3) 
Multiple binding of this kind is called statistical. When 
the sites are initially equivalent but the binding of the 
nth ligand causes a conformational change in the 
macromolecule such that its binding strength toward 
the (n  + 1)th ligand is enhanced, then we speak of 
positive linkagelo or, more commonly, positive coop- 
erativity. Equation 3 then becomes an inequality, and 
K,+,/K, is higher than it would be for statistical 
binding. All the criteria given in the literature for the 
recognition of positive cooperativity are essentially 
based on this inequality; we shall therefore adopt a 
positive deviation from the  equality (3) as our criter- 
ium for positive cooperativity. The condition for initial 
positive cooperativity is then Kz > Kl(t  - 1) /2 t .  Sim- 
ilarly, when the binding of a ligand impedes the binding 
of a subsequent ligand, then K,+,/Kn is lower than it 
would be for statistical binding, negative cooperativity 
having taken place. Mixed cooperativity can of course 
also occur. However, we shall not deal with this phe- 
nomenon in our short Account. 

In order to get some insight into the nature of the 
binding, the experimenter will in general interpret his 
experimental results in terms of the binding constants. 
The most straightforward presentation of the data is 
to calculate the occupancy r, that is to say, the average 
number of ligands bound per macromolecule, and to 
write the result in terms of the stepwise equilibrium 
model which is always applicable, whatever the nature 
of the binding519 

r =  
[ P X ]  + 2 [ P X 2 ]  + ... + n[PX,] + ... + t [ P X , ]  

[PI + [ P X ]  + [PX,]  + ... + [PX,] + ... + [PX,]  
(4) 

or, introducing the stoichiometric binding constants (eq 
1) 
r = {Klx + 2K1Kzx2 + ... + nKIK ,...Knxn + ... + 

tKIK, ... K,x tJ / ( l  + K1x + K1K2x2 + ... + 
KlK, ... K,X" + ... + KIK 2...K,xt) (5) 

where x is the concentration of free ligand. The de- 
nominator of this expression is the binding polynomial 
defined by Wyman.lo The numerator of r is the de- 
rivative of the binding polynomial with respect to In x . ~  

For statistical binding the binding polynomial is 
easily seen to equal (1 + Q x ) ~ ,  so that the numerator 
of r becomes tQx(1  + Qx),-l; eq 5 reduces therefore to 
the Scatchard equationll 

r = t Q x / ( l  + Qx)  (6) 

(9) I. M. Klotz, Arch. Biochem., 9, 109 (1946). 
(10) J. Wyman, Q. Rev. Biophys., 1, 35 (1968). 

When r and x have been determined, then Q and t can 
easily be obtained from reciprocal plotsg or from a plot 
of r / x  as a function of r ,  known as the Scatchard plot.ll 

On the basis of eq 5, the experimentally accessible 
parameters are the Adair12 constants K,, K,Kz, KiKzK3, 
and Kl...Kt, and not the binding constants defined in 
eq 1. With the exception of K1, these latter constants 
are thus the result of dividing two experimental quan- 
tities by each other. If, for example, K,/Kl then turns 
out to fulfill the conditions for positive cooperativity, 
then it would be misleading to say13 that the first ligand 
is bound less strongly than subsequent ligands. Rather, 
positive cooperativity means that in the bicomplex both 
ligands are bound more strongly than the first ligand 
is in the monocomplex. This is because, whatever the 
mechanism of the cooperativity, the conformation of the 
whole system has changed as a consequence of the 
binding of the first ligand. (It is only for heterotropic 
binding that the binding constants of one ligand in the 
presence or absence of another ligand can be compared 
and the interaction energy e~aluated.~)  

Binding Curve and Scatchard Plot 
A plot of r as a function of x is termed the binding 

curve. Equation 6 shows that, for statistical binding, 
this plot is "hyperbolic"; i.e., it is the positive section 
of a rectangular hyperbola with a horizontal asymptote 
at  r = t ,  reached at  high values of r ,  and a vertical 
asymptote a t  x = -1/Q. The tangent at  x = 0 is Qt. 
This curve is useful for a qualitatively interpretation 
of experimental results, though, as we shall see, it is not 
a good diagnostic for cooperativity. 

The plot of r / x  as a function of r is a much better 
diagnostic. When the binding is statistical, then, again 
as shown by eq 6, this plot is a straight line. The in- 
tercept on the r / x  axis is tQ,  and the slope is -8. 
Furthermore, r tends to  t at saturation (when r / x  - 
0). This enables the number of sites to be estimated 
by extrapolation in cases where measurements near 
saturation may not be feasible. 

When there is cooperativity, the plot is no longer a 
straight line, but the  above features are preserved. The 
intercept on the r / x  axis is K,, and the slope at  high 
values of r approaches -tK, (which, for statistical 
binding, would equal tQ and -8, respectively). The 
initial slope equals 2K,-K1, independent of t ,  contrary 
to a recent statement by Dahlq~is t . '~  Therefore, pro- 
vided experiments can be carried out in a sufficiently 
wide range of concentration, the plot yields quantitative 
information about four of the parameters of eq 5, 
namely,14 K1, K,, K,, and t. In the absence of initial 
cooperativity 2Kz - K1 is again just equal to -Q for any 
value of t (see eq 2). But when there is negative initial 
cooperativity, then 12Kz - KII > IQI and the initial slope 
is more negative than the final slope-the plot is con- 
vex. By the same reasoning, initial positive coopera- 
tivity leads to a concave plot. Concavity is thus a 
sufficient criterium for positive ~ooperativity,3.',~ al- 
though the experimental data may have to be extremely 

(11) G. Scatchard, Ann. N.Y. Acad. Sci., 51, 660 (1949). 
(12) G. S. Adair, J. Biol. Chem., 63, 529 (1925). 
(13) F. W. Dahlquist, Methods Enzymol., 48, 270 (1978). The ex- 

pression given by this author for the initial slope of the Scatchard plot 
with t = 2 is identical with that given here, his binding constants being 
divided by the statistical factor, so that his K1 is K,/2 and his K, is 2K2 
of our eq 1. 

(14) D. L. Hunston, Anal. Biochem., 63, 99 (1975). 
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+ 
Figure 1. Scatchard plot (full curve) for K1 = 1, K 2  = 0.39, and 
K3 = 0.13. The plot is continued to negative values of r and r / x  
(broken curve) to show the mathematical behavior of the function 
r/n.  The crosses indicate the maximum and the point of infinite 
slope, respectively. 

good for this property to be recognized. This is illus- 
trated in Figure 1 for t = 3, K1 = 1, K 2  = 0.39, and K3 
= 0.13 (full curve). Cooperativity is of course much 
more apparent when (2K2 - Kl) > 0 so that the plot has 
an actual maximum, but this is not the condition for 
initial positive cooperativity as is sometimes15 stated. 

Another criterium for positive cooperativity is often 
stated to consist in a point of inflection in the binding 
curve. It can be shown, h ~ w e v e r , ~  that the condition 
for this to occur is more stringent, namely, (2K2 - K,) 
> 0. But this is just the condition for a maximum in 
Scatchard plot! From the condition d2r/dx2 = 0, on the 
one hand, and from the initial slope of the Scatchard 
plot on the other, we found that only for (2K2 - K,) = 
0 do the point of inflection of one curve and the max- 
imum of the other occur at  the same value of x, namely, 
x = 0 (independent of t). For other values of (2K2 - K,) 
we solved d2r/dx2 = 0 only for t = 2 and found that for 
(2K2 - K,) > 0 the point of inflection and the maximum, 
respectively, occur at different values of x. When (2K2 
- K,) < 0 while the condition for positive cooperativity 
continues to be fulfilled, then the binding curve still has 
a point of inflexion, and the Scatchard plot still has a 
maximum, but at  negative (and, again, not coinciding) 
values of x .  Clearly, these points cannot be realized 
experimentally (see Figure 1, broken line, for an exam- 
ple with t = 3). From the evidence presented by Ba- 
ghurst et a1.6 we conclude that our result can be gen- 
eralized, an exact correspondence existing between the 
critical points in the Scatchard plot and the points of 
inflection of the binding curve. 
The Hill Plot 

A plot of In [r/( t  - r)] as a function of In x is called 
a Hill plot. The slope of the line obtained, 

n H  = - - In (r/t)( 4 r )  (7) 
d In [r/( t  - r)] 

d In x d In x 
is called the Hill coefficient; [r/(t - r)] is the number 
of occupied sites divided by the number of free sites. 
If n H  were constant, we could integrate this equation 

(15) J. E. Fletcher, J. Phys. Chem., 81, 2374 (1977); A. A. Spector, J. 
E. Fletcher, and J. D. Ashbrook, Biochemistry 9, 4580 (1970). 

to get r/(t - r) = K X ~ H  (where K is an integration con- 
stant) or, solving for r / t  

r / t  = K x n ~ / ( l  + K x n ~ )  (8) 

which is the Hill equation16 in our terminology. Ex- 
perimentally, n H  is indeed often found to be constant 
over a wide range of x. Early workers seem to have been 
concerned when this was not the case, whereas it is now 
realized that eq 8 has no theoretical basis, and nH can 
be constant only in two limiting cases. One is nH = 1, 
when eq 8 reverts to eq 6 (no cooperativity, K = Q of 
eq 6). In the second limit, n H  = t (infinite cooperativity, 
K = KlK2..Kt). In this limit, all binding constants must 
be infinitely small in comparison with K,. This is 
possible only when the corresponding site interaction 
becomes infinite.1° Obviously, any real system can only 
approach this state of affairs; i.e., nH can only approach 
t ,  the more closely, the higher the cooperativity. 

In order to make use of nH as a diagnostic for positive 
cooperativity we should like to know (nH)", the highest 
value that nH can take for a given system. A good 
estimate can be obtained from the value of r / t  at  the 
maximum of the Scatchard plot13J7 where-from d(r/ 
x ) / d r  = ( l / x ) ( l  - d In x/d In r) = 0-we have dln r/dln 
x = 1. Introducing this condition into the second half 
of eq 7 we get 

n~ (-> (at max of Scatchard plot) (9) t - r  

Our calculations for t = 2 and t = 3 (again with initial 
cooperativity only) showed that nH at the maximum of 
the Scatchard plot does not coincide mathematically 
with ( n ~ ) , , , ~ ~ .  Nor does n H  always have its maximum 
a t  the midpoint (r/ t  = 0.5) as is often stated. This is 
correct only for t = 2, and for higher values of t when 
the ratios between the binding constants fulfill certain 
conditions of symmetry.lS It is only because the Hill 
plot is very nearly straight over a wide range of r that 
the various estimates for (nH)" coincide for all prac- 
tical purposes. The approximation expressed by eq 9 
breaks down only when the cooperativity is so weak that 
the Scatchard plot has no maximum, and nH differs 
only little from unity. 

Not only can eq 9 thus serve to estimate (nH)max, but 
also it can be applied in reverse.17 When nH has been 
determined experimentally and found constant over a 
sufficiently wide range, then it can be used to estimate 
r at  the maximum of the Scatchard plot. This is 
claimed17 to give a better estimate for the maximum 
than that derived from an inspection of the experi- 
mental Scatchard plot itself. 

In addition to the conclusions that can be drawn from 
nH,  the Hill plot has been shown by WymanloJg to be 
an important tool for the estimation of the interaction 
energy. In order to understand this, we have to consider 

(16) A. V. Hill, J. Physiol. (London) 40, IV (1910). 
(17) F. W. Dahlquist, FEBS Lett., 49, 267 (1974). 
(18) A. Cornish-Bowden and D. E. Koshland, Jr., J. Mol. Biol., 95,201 

(1975). 
(19) J. Wyman, Adu. Protein Chen., 4, 407 (1948); 19,223 (1964); J. 

Am. Chem. SOC., 89,2202 (1967). The simple result that the interaction 
energy equals RT  times the vertical distance between the asymptotes is 
the limiting case of a more general treatment which considers the in- 
teraction energy at  any intermediate stage of binding. For this purpose, 
a new coordinate system, at 45O to the original one, has to be introduced. 
The total interaction energy is therefore often given as RT(2)'I2 times the 
length of a line connecting the two asymptotes and at  a right angle to 
them. 
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the asymptotes of the plot at the limits of very high and 
very low values of x .  We shall illustrate this again for 
t = 3, when 

As x - m, In [ r / ( t  - r ) ]  = In 3K3 + In x and nH = 1. As 
x - 0, In [ r / ( t  - r ) ]  = In K1/3 + In x and nH = 1. This 
bears out our statement that the Hill plot cannot be a 
straight line over the whole concentration range. Two 
lines of unit slope-corresponding to binding to only 
the first or only the last site, respectively18-are con- 
nected by an S-shaped curve. 

Furthermore, we see that at any given value of In x 
the vertical distance between the two asymptotes is In 
K,/3 minus In 3K3. This can be rewritten as In K3 - 
In K1 + In 9, or (AG10 - AG30)/RT + In 9, where AGIO 
and AG,” are the standard free energies of formation 
of the first complex from its constituents, and of the 
last complex from its precursor, respectively. In the 
absence of site interaction, this distance is clearly equal 
to zero. However, when there is positive cooperativity, 
then AG30 is more negative than it would be for inde- 
pendent binding, more pronouncedly so the higher the 
cooperativity. Therefore, the vertical distance times RT 
can be seen as the total interaction energylOvlg between 
initially equal sites, and, as we shall see, the minimum 
total interaction energy between initially unequal sites. 
The general expression for this interaction energy is RT 
In (Kl/t2Kt). 
Nonequivalent Sites and Site Binding 
Constants 

In order to understand systems in which the sites are 
initially of different binding strength, we use the con- 
cept of site binding  constant^.^ Let there be a number 
of sites a ,  b, c, ...; then the first ligand can bind to any 
of these sites, the second ligand can bind to any of the 
remaining free sites, and so on. Therefore, in the ab- 
sence of site interaction 

K1 = Q, + Q b  + Q, + ... 
K1K2 = QaQb + QaQb + QaQc + QbQc + 

KlK2K3 = QaQbQc + 
(11) 

.... 
The stoichiometric binding constants resulting from eq 
11 can easily be calculated to exhibit the characteristics 
of negative cooperativity. This is intuitively obvious, 
because the stronger binding sites will tend to be oc- 
cupied first, leaving the weaker sites to be occupied by 
the ligands which enter a t  a later stage. It must be 
emphasized that, although the formal condition for 
negative cooperativity is thus met, “negative 
cooperativity” is really a misnomer in this case, because 
no negative site interaction has taken place. 

When, in addition to being initially non-equivalent, 
the occupied sites exhibit a negative influence on fur- 
ther binding, then the “negative cooperativity” will 
merely be enhanced. 

When the site interaction is positive, this still need 
not give rise to positive cooperativity in the sense of our 
definition. This is because the two properties, ine- 
quality and positive interaction, have opposite effects 
on the stoichiometric binding constants.l0 A clear 

concepts-positive site interactions on the one hand 
and positive cooperativity as expressed in our formal 
definition, on the other. Failure to  make this dis- 
tinction15 is ap t  to  lead t o  confusion. 

In order to show the condition under which positive 
site interaction leads to a positive deviation from the 
equality (3), we shall confine ourselves to the simple 
case of t = 2. If the presence of one ligand on site a 
influences the binding strength of site b (and, neces- 
sarily, vice versa3), then KIKz no longer equals QaQb as 
in eq 11. Following Fletcher et al.15 we now define an 
interaction coefficient Iint by the expression KIKz = 
QaQJint. Clearly, when the site interaction is positive, 
then Iint > 1 and vice versa. From the definition of lht 
we calculate that K2/Kl = Q,QJht/(Qa + Qb),2 whereas 
in the absence of cooperativity K2/K1 = 1/4 (eq 3). 
Therefore, for the formal condition for positive coop- 
erativity to be fulfilled, the positive interaction must 
be strong enough so that Iint > (Q, + Qb)2/4&,Qb. Ob- 
viously, the greater the initial difference between sites 
a and b, the higher does Iint have to be for positive 
cooperativity to become manifest. It is important to 
note that the experimental measurement of KlK2 does 
not enable one to make any pronouncement about Q,, 
Qb, and lht. Different combinations of these parameters 
can lead to the same value of K2K1.5,15 

The Scatchard Equation and the Factorability 
of the Binding Polynomial 

sites, eq 6 can be extended to” 
For the special case of independent, initially unequal 

When this equation is multiplied out, we obtain an 
expression of the type of eq 4, the constants appearing 
in this equation being given by eq 11. Conversely, when 
the experimental data resulting from the binding to 
independent sites of different strength are interpreted 
in terms of eq 4, then the binding polynomial can be 
factorized, the negative reciprocals of the roots15 
equalling Q,, Q b ,  Q,, .... . It turns out that it may be 
possible to factorize the binding polynomial even when 
the binding sites are not independent. In such cases, 
however, it is not justified to represent the experimental 
data in terms of eq 12 (although the resulting equation 
is claimed15 to be more covenient to fit to experimental 
results than eq 4). The reciprocal roots have no physical 
meaning5J5 because obviously one cannot assign a value 
to the binding constant of a site whose binding strength 
changes during the binding process. Therefore, the 
resulting values have been very aptly termedz0 the 
binding constants of “independent ghost sites“. It is 
important to realize that no conclusion about the origin 
of negative deviations from statistical binding can be 
drawn from the fact that the binding polynomial has 
been successfully factorized. 

However, when the sites are not independent, then 
it is sometimes impossible to factorize the binding 
polynomial in terms of real numbers. The conditions 
under which this occurs will be seen to be of special 
interest. 

For t = 2 the roots of the binding polynomial turn 
out to equal -(1/2K2)[1 f (1 - 4K2/Kl)1/2].5 We see 

distinction should be made between the two (20) I. M. Klotz, Trends. Pharmacol. Sci., 4, 253 (1983). 
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Figure 2. Curves representing the loci for three real roots of the 
binding polynomial (two of which are identical) in the coordinate 
system 7 = 3Kz/K1 and p = 3K3/Kz. Only positive values of q 
and p are physically meaningful. The polynomial is factorable 
for values of 7 and p within the hatched surface. 

immediately that in the absence of cooperativity, when 
4K2/K, equals unity, the polynomial has two identical 
roots, when there is negative cooperativity it has two 
real, different roots, whereas positive cooperativity leads 
to the appearance of a complex conjugate pair. For t 
= 2 the lack of factorability can thus serve as an un- 
equivocal criterium for positive cooperativity. This 
criterium is often held to be generally valid. 

It has recently been shown,7 however, that for t 2 3, 
positive cooperativity is a sufficient, but not a necessary 
condition for complex roots to appear. For t = 3, the 
problem is amenable to graphical representation in two 
dimensions. 
3K2/Kl and p = 3K3/K2.  For statistical binding, p = 
7 = 1. The two curves in this figure represent the loci 
of those combinations of 7 and p values which corre- 
spond to three real roots, two of which are identical. 
The region for one real and two complex roots of the 
polynomial lies to one side of the loci, whereas the re- 
gion to the other side-shown hatched in the graph- 
corresponds to factorability into three unequal roots. 
The graph is seen to be symmetrical with respect to 11 
and p ,  the loci being determined by 7 = ( l / p z ) ( 3 p  - 2 
f 2(1 - p)3 /z )  and an identical equation in which 7 and 
p are interchanged.21 We have continued the curves 
to negative values of 7 and p although these values have 
no physical meaning, in order to show that the function 
is continuous, the locus reaching the asymptotes of p 
= 0 and 7 = 0 for 7 = --03 and p = -a, respectively. 

Figure 2 illustrates several interesting features. One 
of them is the well-known fact that positive coopera- 
tivity (7 or p or both above unity) always leads to com- 
plex conjugate roots of the binding polynomial. On the 
other hand, when both 7 and p are smaller than 0.75, 
then the polynomial can always be factorized. When 
either 7 or p ,  or both, are above these values, but still 
smaller t h a n  uni ty ,  there is an infinite number of 
combinations of these parameters for which the poly- 
nomial is factorable and of others in which it is not. In 

(21) Bardsley7 presents a graph similar to our Figure 2, but with axes 
K 2 / K l  and K31Kl instead of our 2K2/K1 and 3K3/K2. The symmetry of 
the interaction between the first and second, and second and third sites 
is thus lost. Furthermore, the fact that positive interaction between the 
second and third sites must lead to lack of fractorability becomes less 
immediately apparent from the graph. 

This is shown in Figure 2 where 7 

particular, we note with some surprise that for a system 
which can be characterized by a point in the upper 
right-hand corner of the hatched area (7 or p or both 
>0.75) not only positive site interaction (movement of 
the point upwards and/or to the right) but also negative 
site interaction (movement of the point downwards 
and/or to the left) can cause the polynomial to become 
nonfactorable. We have not been able to discern any 
obvious or intuitive difference between pairs of 17 and 
p which lead to factorability and those which do not. 

Furthermore, it has been showns that for t = 4 the 
mathematical conditions for two real and two complex, 
and even all-complex, roots are consistent, with negative 
deviations of any kind from statistical behavior. The 
authors of ref 8 conclude this situation to hold also for 
still higher values oft. We may thus state that whereas 
factorability of the binding polynomial cannot be taken 
as a sign for the absence of site interaction, lack of 
factorability, in the presence of negative deviations from 
statistical binding, can be taken as an unequivocal in- 
dication for site interaction-negative when the sites 
are initially equivalent, negative or positive when they 
are unequal. This conclusion does not seem to have 
been drawn before. 
Prior Isomerization as a Mechanism for 
Cooperative Binding 

Just as the criteria for negative cooperativity may be 
met even in the total absence of negative site interac- 
tion, positive cooperativity may become manifest 
through a mechanism which has nothing to do with 
positive site interaction, namely, prior is0merization.l 
With t = 4, this is the mechanism proposed in the 
classical paper by Monod, Wyman, and Changeux for 
binding to hemoglobin.22 However, all the relevant 
features can be illustrated with the aid of the simpler 
case of t = 2. 

Consider a macromolecule which, in the absence of 
ligand, exists in two conformations, R and T, having 
different binding strengths. This can be written sche- 
matically in Scheme I, where we have assumed the 
binding of each of the two conformers R and T to be 
statistical. It is now intuitively obvious that when L 
is large, (i.e., when T is the dominant form) and, at the 
same time, the R form has the higher binding strength, 
then the stoichiometric binding constant for the first 
ligand may be small in comparison with that for the 
second ligand which already finds a conformation fa- 
vorable to binding.23 This kind of positive deviation 
from stat,istical binding is thus based on a shift of the 
equilibrium T - R. The stabilization of the more 
strongly binding form has early been recognizedz4 and 
has been treated quantitatively for more general cases.25 

Scheme I 
R + T  [T]/[R] = L 

R + X + RX 
T + X + T X  

K1,R = 2QR 

K1,T = ~ Q T  

RX + X + RX2 
TX + X + TX, 

K2,R = QR/2 
KZ,T = Q T / ~  

(22) J .  Monod, J .  Wyman, and J.-P. Changeux, J .  Mol. Biol., 12, 88 

(23) E. Nissani and B. Perlmutter-Hayman, Int. J. Chem. Kinet., 17, 

(24) J. F. Foster and K. Aoki, J .  Am. C'hem. SOC., 80, 5215 (1958). 

(1965). 

591 (1985). 
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Figure 3. The dependence of 4K2/K, on log W (where W is the 
ratio of the intrinsic binding constants) at two fixed values of L 
(the ratio of the concentration of the two conformers): lower curve, 
L = 2; upper curve, L = 20. Where the limiting values are not 
reached, they are indicated by dashed lines. (At the higher value 
of L,  the increase of 4K2/K above unity as log W increases above 
zero is too small to show up in the graph.) Note the difference 
in scale for the two curves. 

From Scheme I, the observed binding constants are 
easily derived to be 

Ki = ~ ( Q T L  Q R ) / ( ~  + L) 
(13) 

KiK2= [QT'L + Q ~ ~ l / ( 1  + L)  
so that 

4Kz/K1 = 1 + L(w- 1)2/(Lw + (14) 

where we define QT/QR 3 W. The second term on the 
right hand side of eq 14 cannot be negative. Therefore, 
in a system which can be described by Scheme I ,  a 
positive deviation from statistical binding must always 
occur (except in the trivial case when L = 0 or L = m, 

i.e., when there is only one conformer present). Fur- 
thermore, we see that, for a given L, the value of 4K2/K1 
starts a t  1 + L for W = 0. With increasing W, the 
function decreases, reaching unity (the condition for 
statistical binding) in the trivial case when W = 1. As 
W continues to increase, our function increases, reach- 
ing a limiting value of 1 + 1/L. Clearly, when L > 1, 
the limiting value at  W = 0 will be high, whereas at high 
Wit  will be only slightly above its statistical value (and 
vice versa for L < 1). This is illustrated in Figure 3 
where we show 4Kz/K1 as a function of log W for two 
fixed values of L, higher than unity. 

Although our intuitive guess is thus confirmed, we 
must not simply conclude that high values of L paired 
with low values of W always entail a strong positive 
deviation. This is because eq 14 is not symmetrical with 
respect to W and L; whereas the cooperative effect 
reaches the highest value compatible with a given L 
(>1) as W tends to zero, differentiation of eq 14 with 
respect to L at  constant W shows that (for W < 1) the 
effect does not increase monotonically with increasing 
L to some limiting value. Rather, 4K2/K1 as a function 
of L passes through a maximum when 

WL = 1 (15) 
Equation 14 shows that the highest value of 4Kz/K1 

(25) M. M. Rubin and J.-P. Changeux, J. Mol. Biol., 21, 265 (1966); 
J. A. Reynolds, S. Herbert, H. Polet, and J. Steinhardt, Biochemistry, 6, 
937 (1967). 
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Figure 4. The dependence of 4K2/K, on log L,  for two fixed 
values of W: left curve, W = 5; right curve, W = 1/30. 

compatible with a given value of W is thus 1 + (W - 
2 + 1/W)/4, reached only at  one specific value of L. 

The behavior of 4K2/K1 as a function of log L is 
shown in Figure 4 for two fixed values of W, one 
somewhat above unity and one considerably below. The 
curves are symmetric around log L = -log W, in ac- 
cordance with eq 15. The peak is seen to be higher-in 
fact, it increases indefinitely-the more L and W differ 
from unity while obeying eq 15. On the other hand, the 
effect is seen to fall off rapidly as L deviates more and 
more from this equation. A dramatic positive effect 
thus occurs only when both W a n d  L differ very much 
from unity while a t  the same time fulfilling, or nearly 
fulfilling, the stringent condition imposed by eq 15. 

From the general formula give by Monod, Wyman, 
and Changeux22 it can easily be derived that for t = 4 
the condition for initial cooperativity is of exactly the 
same mathematical form as the condition for coopera- 
tivity in the simpler system treated above, and the same 
analysis would apply. The general statement that the 
cooperativity is more marked when L is large and W 
is s m a l P ~ ~ ~  is therefore misleading. It is true, of course, 
that the effect is small when L and Ware both high or 
both low3 but an indefinite increase of the effect with 
increasing L occurs only when W actually equals zero. 

Concluding Remarks 
In conclusion we should like to stress that the various 

methods of representing experimental results-binding 
equation, binding curve, Scatchard or reciprocal plots, 
and Hill plot-are all equivalent. For a given case, one 
may be more appropriate than others, but information 
that, in principle, cannot be garnered from one cannot 
be obtained in any other way. In particular, as we have 
seen, positive site interaction may pass undetected when 
the sites are initially different, whereas negative in- 
teraction between identical sites is usually indistin- 
guishable from the presence of different independent 
sites. These conclusions hold however painstakingly the 
experiments may have been carried out, whatever for- 
mula is chosen for a representation of the data, and 
however sophisticated the method used to evaluate the 
parameters appearing in this formula. 

In practice, however, the prospect may not be quite 
so bleak, because the experienced worker in the field 
is after all not confined to the measurement of homo- 
tropic binding! He may use his knowledge of the 
structure of the macromolecule to decide about the 
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likelihood of initially equivalent sites being present, or 
he may follow the change in some physical property of 
the macromolecule as a function of r in order to de- 
termine whether a conformational change has accom- 
panied the binding. In simple cases, kinetic measure- 
ments may also be of help. Furthermore, the specific 
properties of the ligand can provide a clue; if the ligand 
is charged or polar, negative interactions are almost a 
certainty. Furthermore, the experimenter may be able 
to draw conclusions from measurements of heterotropic 

binding. For example, it has been shown26 that a com- 
parison between nH in the presence of a competing 
ligand and that in its absence enables a decision be- 
tween the two mechanisms of a negative deviation from 
eq 3 to be made. 

I t  is a pleasure to acknowledge he lp fu l  suggestions by Prof. 
H .  J .  G. Hayman  and Dr. T. Feldmann. 

(26) Y. I. Henis and A. Levitsky, Eur. J .  Biochem., 102, 449 (1979); 
Ann. N.Y. Acad. Sci., 366, 217 (1981). 


